Source code for pyannote.metrics.plot.binary_classification

#!/usr/bin/env python
# encoding: utf-8

# The MIT License (MIT)

# Copyright (c) 2016 CNRS

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# AUTHORS
# Hervé BREDIN - http://herve.niderb.fr


import warnings
import numpy as np
from pyannote.metrics.binary_classification import det_curve
from pyannote.metrics.binary_classification import precision_recall_curve

import matplotlib
with warnings.catch_warnings():
    warnings.simplefilter("ignore")
    matplotlib.use('Agg')
import matplotlib.pyplot as plt


[docs]def plot_distributions(y_true, scores, save_to, xlim=None, nbins=100, ymax=3., dpi=150): """Scores distributions This function will create (and overwrite) the following files: - {save_to}.scores.png - {save_to}.scores.eps Parameters ---------- y_true : (n_samples, ) array-like Boolean reference. scores : (n_samples, ) array-like Predicted score. save_to : str Files path prefix """ plt.figure(figsize=(12, 12)) if xlim is None: xlim = (np.min(scores), np.max(scores)) bins = np.linspace(xlim[0], xlim[1], nbins) plt.hist(scores[y_true], bins=bins, color='g', alpha=0.5, normed=True) plt.hist(scores[~y_true], bins=bins, color='r', alpha=0.5, normed=True) # TODO heuristic to estimate ymax from nbins and xlim plt.ylim(0, ymax) plt.tight_layout() plt.savefig(save_to + '.scores.png', dpi=dpi) plt.savefig(save_to + '.scores.eps') plt.close() return True
[docs]def plot_det_curve(y_true, scores, save_to, distances=False, dpi=150): """DET curve This function will create (and overwrite) the following files: - {save_to}.det.png - {save_to}.det.eps - {save_to}.det.txt Parameters ---------- y_true : (n_samples, ) array-like Boolean reference. scores : (n_samples, ) array-like Predicted score. save_to : str Files path prefix. distances : boolean, optional When True, indicate that `scores` are actually `distances` dpi : int, optional Resolution of .png file. Defaults to 150. Returns ------- eer : float Equal error rate """ fpr, fnr, thresholds, eer = det_curve(y_true, scores, distances=distances) # plot DET curve plt.figure(figsize=(12, 12)) plt.loglog(fpr, fnr, 'b') plt.loglog([eer], [eer], 'bo') plt.xlabel('False Positive Rate') plt.ylabel('False Negative Rate') plt.xlim(1e-2, 1.) plt.ylim(1e-2, 1.) plt.grid(True) plt.tight_layout() plt.savefig(save_to + '.det.png', dpi=dpi) plt.savefig(save_to + '.det.eps') plt.close() # save DET curve in text file txt = save_to + '.det.txt' line = '{t:.6f} {fp:.6f} {fn:.6f}\n' with open(txt, 'w') as f: for i, (t, fp, fn) in enumerate(zip(thresholds, fpr, fnr)): f.write(line.format(t=t, fp=fp, fn=fn)) return eer
[docs]def plot_precision_recall_curve(y_true, scores, save_to, distances=False, dpi=150): """Precision/recall curve This function will create (and overwrite) the following files: - {save_to}.precision_recall.png - {save_to}.precision_recall.eps - {save_to}.precision_recall.txt Parameters ---------- y_true : (n_samples, ) array-like Boolean reference. scores : (n_samples, ) array-like Predicted score. save_to : str Files path prefix. distances : boolean, optional When True, indicate that `scores` are actually `distances` dpi : int, optional Resolution of .png file. Defaults to 150. Returns ------- auc : float Area under precision/recall curve """ precision, recall, thresholds, auc = precision_recall_curve( y_true, scores, distances=distances) # plot P/R curve plt.figure(figsize=(12, 12)) plt.plot(recall, precision, 'b') plt.xlabel('Recall') plt.ylabel('Precision') plt.xlim(0, 1) plt.ylim(0, 1) plt.tight_layout() plt.savefig(save_to + '.precision_recall.png', dpi=dpi) plt.savefig(save_to + '.precision_recall.eps') plt.close() # save P/R curve in text file txt = save_to + '.precision_recall.txt' line = '{t:.6f} {p:.6f} {r:.6f}\n' with open(txt, 'w') as f: for i, (t, p, r) in enumerate(zip(thresholds, precision, recall)): f.write(line.format(t=t, p=p, r=r)) return auc